
Pygame Zero Invaders

There must be very few people who have not played
Space Invaders, and for some it may have been their
very first experience of a computer game

T he Space Invaders game format requires
quite a few different coding techniques to
make it work. For some time, if your author

needed to learn a new coding language, he would
task himself to write a Space Invaders game in it.
This would give a good workout through the syntax
and functions of the language.

This tutorial will be split into two parts.
In the first we will build a basic invaders game
with aliens, lasers, defence bases, and a score.
The second part (next issue) will add all the
extra bits that make it into the game that
appeared in amusement arcades and sports
halls in the 1970s.

Mark
Vanstone

Educational
software author
from the nineties,
author of the
ArcVenture series,
disappeared into
the corporate
software wasteland.
Rescued by the
Raspberry Pi!

magpi.cc/YiZnxl

@mindexplorers

M
A

K
ER

Pygame Zero
Invaders

You’ll Need

> � �Raspbian Jessie
or newer

> � �An image
manipulation
program such
as GIMP, or
images from
magpi.cc/MATfil

> � �The latest version
of Pygame Zero (1.2)

> � �A cool head as the
lasers rain down
on you

The defence bases block alien
lasers, but reduce in size each time
they are hit until they are gone

The aliens move across
the screen in a regular
formation, moving
towards the player’s bases

The player ship can be
moved left and right
with the arrow keys

The player scores points for
every alien that is destroyed

32

TUTORIAL

magpi.cc

http://magpi.cc/YiZnxl
https://twitter.com/mindexplorers
http://magpi.cc/MATfil

Pygame Zero Invaders

01 Let’s get stuck in
If you have read the previous episodes of this

series, you will know how we set up a basic Pygame
Zero program, so we can jump right in to getting
things on the screen. We will need some graphics for
the various elements of the game – you can design
them yourself or use ours from: magpi.cc/MATfil.
The Pygame Zero default screen size is 800 width by
600 height, which is a good size for this game, so we
don’t need to define WIDTH or HEIGHT.

02 A bit of a player
Let’s start with getting the player ship on

the screen. If we call our graphic player.png, then
we can create the player Actor near the top of
our code by writing player = Actor("player",
(400, 550)).

We will probably want something a bit more
interesting than just a plain black window, so we
can add a background in our draw() function. If we
draw this first, everything else that we draw will
be on top of it. We can draw it using the blit()
function by writing screen.blit('background',
(0, 0)) – assuming we have called our background
image background.png. Then, to draw the player,
just add player.draw() afterwards.

03 Let’s get moving
We need the player ship to respond to key

presses, so we’ll check the Pygame Zero keyboard
object to see if certain keys are currently pressed.
Let’s make a new function to deal with these
inputs. We will call the function checkKeys() and
we’ll need to call it from our update() function.

In the checkKeys() function, we write if
keyboard.left: and then if player.x > 40:
player.x -= 5. We need to declare the player
Actor object as global inside our checkKeys()
function. We then write a similar piece of code to
deal with the right arrow key; figure1.py shows
how this all fits together.

04 An alien concept
We now want to create a load of aliens

in formation. You can have them in whatever
format you want, but we’ll set up three rows of
aliens with six on each row. We have an image
called alien.png and can make an Actor for each

import pgzrun

player = Actor("player", (400, 550)) # Load in the player
Actor image

def draw(): # Pygame Zero draw function
 screen.blit('background', (0, 0))
 player.draw()

def update(): # Pygame Zero update function
 checkKeys()

def checkKeys():
 global player
 if keyboard.left:
 if player.x > 40: player.x -= 5
 if keyboard.right:
 if player.x < 760: player.x += 5

pgzrun.go()

figure1.py
001.
002.
003.

004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.

alien that we will store in a list so that we can
easily loop through the list to perform actions
on them. When we create the alien Actors, we
will use a bit of maths to set the initial x and y
co-ordinates. It would be a good idea to define
a function to set up the aliens – initAliens()
– and because we will want to set up other
elements too, we could define a function init(),
from which we can call all the setup functions.

05 Doing the maths
To position our aliens and to create them as

Actors, we can declare a list – aliens = [] – and
then create a loop using for a in range(18):. In
this loop, we need to create each Actor and then
work out where their x and y co-ordinates will
be to start. We can do this in the loop by writing:
aliens.append(Actor("alien1", (210+(a %
6)*80,100+(int(a/6)*64)))). This may look
a little daunting, but we can break it down by
saying ‘x is 210 plus the remainder of dividing
by 6 multiplied by 80’.

This will provide us with x co-ordinates starting
at 210 and with a spacing of 80 between each. The
y calculation is similar, but we use normal division,
make it an integer, and multiply by 64.

 �Functions to create
a player ship and
background, display
them, and handle
moving the player ship

Get The
MagPi 71

This is the latest
instalment
in a series of
Pygame Zero
tutorials. You
can download
digital editions
of previous
tutorials for free.
Start with The
MagPi #71

magpi.cc/71

33

TUTORIAL

magpi.cc

http://magpi.cc/MATfil
http://magpi.cc/71

Pygame Zero Invaders

06 Believing the strangest things
After that slightly obscure title reference,

we shall introduce the idea of the alien having a
status. As we have seen in previous instalments,
we can add extra data to our Actors, and in this case
we will want to add a status variable to the alien
after we have created it. We’ll explain how we are
going to use this a bit later. Now it’s time to get
the little guys on the screen and ready for action.
We can write a simple function called drawAlien()
and just loop through the alien list to draw them
by writing: for a in range(len(aliens)):
aliens[a].draw() . Call the drawAlien() function
inside the draw() function.

07 The aliens are coming!
We are going to create a function that

we call inside our update() function that keeps
track of what should happen to the aliens. We’ll
call it updateAliens(). We don’t want to move
the aliens every time the update cycle runs, so
we’ll keep a counter called moveCounter and
increment it each update(); then, if it gets to a
certain value (moveDelay), we will zero the counter.
If the counter is zero, we call updateAliens().
The updateAliens() function will calculate how
much they need to move in the x and y directions to
get them to go backwards and forwards across the
screen and move down when they reach the edges.

08 Updating the aliens
To work out where the aliens should move,

we’ll make a counter loop from 0 to 40. From 0 to
9 we’ll move the aliens left, on 10 we’ll move them
down, then from 11 to 29 move them right. On 30
they move down and then from 31 to 40 move left.
Have a look at figure2.py to see how we can do
this in the updateAliens() function and how that
function fits into our update() function. Notice how
we can use the Pygame Zero function animate()
to get them to move smoothly. We can also add a
switch between images to make their legs move.

09 All your base are belong to us
Now we are going to build our defence

bases. There are a few problems to overcome in
that we want to construct our bases from Actors,
but there are no methods for clipping an Actor
when it is displayed. Clipping is a term to describe
that we only display a part of the image. This is a
method we need if we are going to make the bases
shrink as they are hit by alien lasers. What we will
have to do is add a function to the Actor, just like
we have added extra variables to them before.

10 Build base
We will make three bases which will be

made of three Actors each. If we wanted to display
the whole image (base1.png), we would create
a list of base Actors and display each Actor with
some code like bases[0].draw(). What we want to
do is add a variable to the base to show how high
we want it to be. We will also need to write a new
function to draw the base according to the height
variable. Have a look at figure3.py to see how we
write the new function and attach it to each Actor.
This means we can now call this function from
each base Actor using: bases[b].drawClipped(),
as shown in the drawBases() function.

11 Can I shoot something now?
To make this into a shooting game, let’s add

some lasers. We need to fire lasers from the player
ship and also from the aliens, but we are going to
keep them all in the same list. When we create a
new laser by making an Actor and adding it to the

def updateAliens():
 global moveSequence, moveDelay
 movex = movey = 0
 if moveSequence < 10 or moveSequence > 30: movex = -15
 if moveSequence == 10 or moveSequence == 30:
 movey = 50
 if moveSequence >10 and moveSequence < 30: movex = 15
 for a in range(len(aliens)):
 animate(aliens[a], pos=(aliens[a].x + movex,
aliens[a].y + movey), duration=0.5, tween='linear')
 if randint(0, 1) == 0:
 aliens[a].image = "alien1"
 else:
 aliens[a].image = "alien1b"
 moveSequence +=1
 if moveSequence == 40: moveSequence = 0

figure2.py
001.
002.
003.
004.
005.
006.
007.
008.
009.

010.
011.
012.
013.
014.
015.

Top Tip
Beware
of deleting
elements
of a list

If you delete
a list element
while you are
looping through
it with range
(len(list)),
when you get to
the end of the
loop it will run out
of elements and
return an error
because the range
of the loop is the
original length of
the list.

 �The updateAliens()
function. Calculate
the movement for the
aliens based on the
variable moveSequence

34

TUTORIAL

magpi.cc

Pygame Zero Invaders

list lasers[], we can give the Actor a type. In this
case we’ll make alien lasers type 0 and player lasers
type 1. We’ll also need to add a status variable.
The creation and updating of the lasers is similar
to other elements we’ve looked at; figure4.py
(overleaf) shows the functions that we can use.

12 Making the lasers work
You can see in figure4.py that we can create

a laser from the player by adding a check for the
SPACE key being pressed in our checkKeys()
function. We will use the blue laser image called
laser2.png. Once the new laser is in our list of
lasers, it will be drawn to the screen if we call the
drawLasers() function inside our draw() function.
In our updateLasers() function we loop through
the list of lasers and check which type it is. So if it is
type 1 (player), we move the laser up the screen and
then check to see if it hit anything. Notice the calls
to a listCleanup() function at the bottom. We will
come to this in a bit.

13 Collision course
Let’s look at checkPlayerLaserHit() first.

We can detect if the laser has hit any aliens by
looping round the alien list and checking with the
Actor function – collidepoint((lasers[l].x,

lasers[l].y)) – to see if a collision has occurred.
If an alien has been hit, this is where our status
variables come into play. Rather than just removing
the laser and the alien from their lists, we need to
flag them as ready to remove. The reason for this is
that if we remove anything from a list while we are

def drawClipped(self):
 screen.surface.blit(self._surf, (self.x-32, self.y-
self.height+30),(0,0,64,self.height))

def initBases():
 global bases
 bases = []
 bc = 0
 for b in range(3):
 for p in range(3):
 bases.append(Actor("base1",
midbottom=(150+(b*200)+(p*40),520)))
 bases[bc].drawClipped = drawClipped.__get__
(bases[bc])
 bases[bc].height = 60
 bc +=1

def drawBases():
 for b in range(len(bases)): bases[b].drawClipped()

figure3.py
001.
002.

003.
004.
005.
006.
007.
008.
009.
010.

011.

012.
013.
014.
015.
016.

 �Setting up an
extension function
to draw an Actor
with clipping

Top Tip
Write functions
for each
collective
action

To make coding
easier to read
rather than
having lots of
code associated
with one type
of element in
the draw()
or update()
functions, send it
out to a function
like drawLasers()
or checkKeys().

35

TUTORIAL

magpi.cc

Pygame Zero Invaders

looping through any of the lists then by the time we
get to the end of the list, we are an element short
and an error will be created. So we set these Actors
to be removed with status and then remove them
afterwards with listCleanup().

14 Cleaning up the mess
The listCleanup() function creates a

new empty list, then runs through the list that is
passed to it, only transferring items to the new
list that have a status of 0. This new list is then
returned back and used as the list going forward.
Now that we have made a system for one type of
laser we can easily adapt that for our alien laser
type. We can create the alien lasers in the same
way as the player lasers, but instead of waiting
for a keyboard press we can just produce them at
random intervals using if randint(0, 5) == 0:
when we are updating our aliens. We set the type to
0 rather than 1 and move them down the screen in
our updateLasers() function.

15 Covering the bases
So far, we haven’t looked at what happens

when a laser hits one of the defence bases. Because
we are changing the height of the base Actors,
the built-in collision detection won’t give us the
result we want, so we need to write another custom
function to check laser collision on the base Actor.
Our new function, collideLaser() will check the
laser co-ordinates against the base’s co-ordinates,
taking into account the height of the base. We then
attach the new function to our base Actor when
it is created. We can use the new collideLaser()
function for checking both the player and the alien
lasers and remove the laser if it hits – and if it is
an alien laser, reduce the height of the base that
was hit.

16 Laser overkill
We may want to change the number of lasers

being fired by the aliens, but at the moment our
player ship gets to fire a laser every update() cycle.
If the SPACE key is held down, a constant stream
of lasers will be fired, which not only is a little bit
unfair on the poor aliens but will also take its toll
on the speed of the game. So we need to put some
limits on the firing speed and we can do this with
another built-in Pygame Zero object: the clock. If
we add a variable laserActive to our player Actor
and set it to zero when it fires, we can then call
clock.schedule(makeLaserActive, 1.0) to call
the function makeLaserActive() after 1 second.

17 I’m hit! I’m hit!
We need to look now at what happens

when the player ship is hit by a laser. For this we
will make a multi-frame animation. We have five
explosion images to put into a list, with our normal
ship image at the beginning, and attach it to our
player Actor. We need to import the Math module,
then in each draw() cycle we write: player.image
= player.images[math.floor(player.status/6)],
which will display the normal ship image while
player.status is 0. If we set it to 1 when the player
ship is hit, we can start the animation in motion.
In the update() function we write: if player.
status > 0: player.status += 1. As the status
value increases, it will start to draw the sequence
of frames one after the other.

def checkKeys():
 global player, lasers
 if keyboard.space:
 l = len(lasers)
 lasers.append(Actor("laser2",
(player.x,player.y-32)))
 lasers[l].status = 0
 lasers[l].type = 1

def drawLasers():
 for l in range(len(lasers)): lasers[l].draw()

def updateLasers():
 global lasers, aliens
 for l in range(len(lasers)):
 if lasers[l].type == 0:
 lasers[l].y += (2*DIFFICULTY)
 checkLaserHit(l)
 if lasers[l].y > 600: lasers[l].status = 1
 if lasers[l].type == 1:
 lasers[l].y -= 5
 checkPlayerLaserHit(l)
 if lasers[l].y < 10: lasers[l].status = 1
 lasers = listCleanup(lasers)
 aliens = listCleanup(aliens)

figure4.py
001.
002.
003.
004.
005.

006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.

Top Tip
Collect all your
setup code in
one place

If possible, it is
good to have
as much of the
code that sets
everything back
to the beginning
in one place so
that you can easily
restart the game.

 �Checking the keys
that are pressed,
creating lasers,
moving them, and
checking if they have
collided with anything

36

TUTORIAL

magpi.cc

Pygame Zero Invaders

def init():
 global lasers, score, player, moveSequence,
moveCounter, moveDelay
 initAliens()
 initBases()
 moveCounter = moveSequence = player.status = score =
player.laserCountdown = 0
 lasers = []
 moveDelay = 30
 player.images = ["player","explosion1","explosion2",
"explosion3","explosion4","explosion5"]
 player.laserActive = 1

figure5.py
001.
002.

003.
004.
005.

006.
007.
008.

009.

18 Initialisation
Now, it may seem a bit strange to be dealing

with initialisation near the end of the tutorial, but
we have been adding and changing the structure of
our game elements as we have gone along and only
now can we really see all the data that we need to
set up before the game starts. In Step 04 we created
a function called init() that we should call to get
the game started. We could also use this function
to reset everything back to start the game again.
If we have included all the initialisation functions
and variables we have talked about, we should have
something like figure5.py.

19 They’re coming in too fast!
There are a few finishing touches to do to

complete this first part. We can set a DIFFICULTY
value near the top of the code and use it on various
elements to make the game harder. We should also
add a score, which we do by adding 1000 to a global
variable score if an alien is hit, and then display
that in the top right of the screen in the draw()

function. When the game finishes (the player
has been hit or all the aliens are gone), we should
display a suitable message. Have a look at the
complete listing to see how these bits fit in. When
that’s all done, we should have the basis of a Space
Invaders game. In the next part of this series we
will add more into the game, such as levels, lives,
sound, bonus aliens, and a leaderboard.

Top Tip
Define several
variables at
once

If you are setting
several variables
to the same value,
you can combine
them into one line
by writing a = b =
c = 0 to set a, b,
and c to zero.

 �The initialisation of
our data. Calling this
function sets our
variables back to their
start values

 �It’s game over for
now, but we‘ll be back
next issue to improve
the game

37

TUTORIAL

magpi.cc

Pygame Zero Invaders

import pgzrun
from random import randint
import math
DIFFICULTY = 1
player = Actor("player", (400, 550)) # Load in the
player Actor image

def draw(): # Pygame Zero draw function
 screen.blit('background', (0, 0))
 player.image =
player.images[math.floor(player.status/6)]
 player.draw()
 drawLasers()
 drawAliens()
 drawBases()
 screen.draw.text(str(score), topright=
(780, 10), owidth=0.5, ocolor=(255,255,255),
color=(0,64,255), fontsize=60)
 if player.status >= 30:
 screen.draw.text("GAME OVER\nPress Enter
to play again" , center=(400, 300),
owidth=0.5, ocolor=(255,255,255),
color=(255,64,0), fontsize=60)
 if len(aliens) == 0 :
 screen.draw.text("YOU WON!\nPress Enter
to play again" , center=(400, 300), owidth=0.5,
ocolor=(255,255,255), color=(255,64,0) ,
fontsize=60)

def update(): # Pygame Zero update function
 global moveCounter,player
 if player.status < 30 and len(aliens) > 0:
 checkKeys()
 updateLasers()
 moveCounter += 1
 if moveCounter == moveDelay:
 moveCounter = 0
 updateAliens()
 if player.status > 0: player.status += 1
 else:
 if keyboard.RETURN: init()

def drawAliens():
 for a in range(len(aliens)): aliens[a].draw()

def drawBases():
 for b in range(len(bases)):
 bases[b].drawClipped()

def drawLasers():
 for l in range(len(lasers)): lasers[l].draw()

def checkKeys():
 global player, lasers
 if keyboard.left:
 if player.x > 40: player.x -= 5
 if keyboard.right:
 if player.x < 760: player.x += 5
 if keyboard.space:
 if player.laserActive == 1:
 player.laserActive = 0
 clock.schedule(makeLaserActive, 1.0)
 l = len(lasers)
 lasers.append(Actor("laser2",
(player.x,player.y-32)))
 lasers[l].status = 0
 lasers[l].type = 1

def makeLaserActive():
 global player
 player.laserActive = 1

def checkBases():
 for b in range(len(bases)):
 if l < len(bases):
 if bases[b].height < 5:
 del bases[b]

def updateLasers():
 global lasers, aliens
 for l in range(len(lasers)):
 if lasers[l].type == 0:
 lasers[l].y += (2*DIFFICULTY)
 checkLaserHit(l)
 if lasers[l].y > 600:
 lasers[l].status = 1
 if lasers[l].type == 1:
 lasers[l].y -= 5
 checkPlayerLaserHit(l)
 if lasers[l].y < 10:
 lasers[l].status = 1
 lasers = listCleanup(lasers)
 aliens = listCleanup(aliens)

def listCleanup(l):
 newList = []
 for i in range(len(l)):
 if l[i].status == 0: newList.append(l[i])
 return newList

def checkLaserHit(l):
 global player

invaderspart1.py

001.
002.
003.
004.
005.

006.
007.
008.
009.

010.
011.
012.
013.
014.

015.
016.

017.
018.

019.
020.
021.
022.
023.
024.
025.
026.
027.
028.
029.
030.
031.
032.
033.
034.
035.
036.
037.
038.
039.
040.
041.

> Language: Python

042.
043.
044.
045.
046.
047.
048.
049.
050.
051.
052.
053.
054.

055.
056.
057.
058.
059.
060.
061.
062.
063.
064.
065.
066.
067.
068.
069.
070.
071.
072.
073.
074.
075.
076.
077.
078.
079.
080.
081.
082.
083.
084.
085.
086.
087.
088.
089.
090.
091.

38

TUTORIAL

magpi.cc

Pygame Zero Invaders

 if player.collidepoint((lasers[l].x,
lasers[l].y)):
 player.status = 1
 lasers[l].status = 1
 for b in range(len(bases)):
 if bases[b].collideLaser(lasers[l]):
 bases[b].height -= 10
 lasers[l].status = 1

def checkPlayerLaserHit(l):
 global score
 for b in range(len(bases)):
 if bases[b].collideLaser(lasers[l]):
 lasers[l].status = 1
 for a in range(len(aliens)):
 if aliens[a].collidepoint((lasers[l].x,
lasers[l].y)):
 lasers[l].status = 1
 aliens[a].status = 1
 score += 1000

def updateAliens():
 global moveSequence, lasers, moveDelay
 movex = movey = 0
 if moveSequence < 10 or moveSequence > 30:
 movex = -15
 if moveSequence == 10 or moveSequence == 30:
 movey = 50 + (10 * DIFFICULTY)
 moveDelay -= 1
 if moveSequence >10 and moveSequence < 30:
 movex = 15
 for a in range(len(aliens)):
 animate(aliens[a], pos=(aliens[a].x + movex,
aliens[a].y + movey), duration=0.5, tween='linear')
 if randint(0, 1) == 0:
 aliens[a].image = "alien1"
 else:
 aliens[a].image = "alien1b"
 if randint(0, 5) == 0:
 lasers.append(Actor("laser1",
(aliens[a].x,aliens[a].y)))
 lasers[len(lasers)-1].status = 0
 lasers[len(lasers)-1].type = 0
 if aliens[a].y > 500 and player.status ==
0:
 player.status = 1
 moveSequence +=1
 if moveSequence == 40: moveSequence = 0

def init():
 global lasers, score, player, moveSequence,

moveCounter, moveDelay
 initAliens()
 initBases()
 moveCounter = moveSequence = player.status =
score = player.laserCountdown = 0
 lasers = []
 moveDelay = 30
 player.images =
["player","explosion1","explosion2",
"explosion3","explosion4","explosion5"]
 player.laserActive = 1

def initAliens():
 global aliens
 aliens = []
 for a in range(18):
 aliens.append(Actor("alien1", (210+
(a % 6)*80,100+(int(a/6)*64))))
 aliens[a].status = 0

def drawClipped(self):
 screen.surface.blit(self._surf, (self.x-32,
self.y-self.height+30),(0,0,64,self.height))

def collideLaser(self, other):
 return (
 self.x-20 < other.x+5 and
 self.y-self.height+30 < other.y and
 self.x+32 > other.x+5 and
 self.y-self.height+30 + self.height >
other.y
)

def initBases():
 global bases
 bases = []
 bc = 0
 for b in range(3):
 for p in range(3):
 bases.append(Actor("base1",
midbottom=(150+(b*200)+(p*40),520)))
 bases[bc].drawClipped =
drawClipped.__get__(bases[bc])
 bases[bc].collideLaser =
collideLaser.__get__(bases[bc])
 bases[bc].height = 60
 bc +=1

init()
pgzrun.go()

092.

093.
094.
095.
096.
097.
098.
099.
100.
101.
102.
103.
104.
105.
106.

107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.

123.
124.
125.
126.
127.
128.

129.
130.
131.

132.
133.
134.
135.
136.
137.

138.
139.
140.

141.
142.
143.

144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.

156.
157.
158.
159.
160.
161.
162.

163.
164.
165.
166.
167.
168.
169.
170.
171.

172.

173.

174.
175.
176.
177.
178.

magpi.cc/lwqLZj

DOWNLOAD
THE FULL CODE:

39

TUTORIAL

magpi.cc

http://magpi.cc/lwqLZj

